
ZConfig Package Reference
Release 2.4

Zope Corporation

29 March 2007

Lafayette Technology Center
513 Prince Edward Street

Fredericksburg, VA 22401
http://www.zope.com/

Abstract

This document describes the syntax and API used in configuration files for components of a Zope installation written
by Zope Corporation. This configuration mechanism is itself configured using a schema specification written in XML.

Contents

1 Introduction 2

2 Configuration Syntax 2
2.1 Extending the Configuration Schema . 3
2.2 Textual Substitution in Values . 4

3 Writing Configuration Schema 5
3.1 Schema Elements . 5
3.2 Schema Components . 10
3.3 Referring to Files in Packages . 11

4 Standard ZConfig Datatypes 11

5 Standard ZConfig Schema Components 13
5.1 ZConfig.components.basic . 13

The Mapping Section Type . 13
5.2 ZConfig.components.logger . 15

6 Using Components to Extend Schema 17

7 ZConfig — Basic configuration support 19
7.1 Basic Usage . 21

8 ZConfig.datatypes — Default data type registry 21

9 ZConfig.loader — Resource loading support 22
9.1 Loader Objects . 23

10 ZConfig.cmdline — Command-line override support 23

http://www.zope.com/

11 ZConfig.substitution — String substitution 24
11.1 Examples . 24

A Schema Document Type Definition 25

1 Introduction

Zope uses a common syntax and API for configuration files designed for software components written by Zope Corpo-
ration. Third-party software which is also part of a Zope installation may use a different syntax, though any software
is welcome to use the syntax used by Zope Corporation. Any software written in Python is free to use the ZConfig
software to load such configuration files in order to ensure compatibility. This software is covered by the Zope Public
License, version 2.0.

The ZConfig package has been tested with Python 2.3. Older versions of Python are not supported. ZConfig only
relies on the Python standard library.

Configurations which use ZConfig are described using schema. A schema is a specification for the allowed structure
and content of the configuration. ZConfig schema are written using a small XML-based language. The schema
language allows the schema author to specify the names of the keys allowed at the top level and within sections, to
define the types of sections which may be used (and where), the types of each values, whether a key or section must
be specified or is optional, default values for keys, and whether a value can be given only once or repeatedly.

2 Configuration Syntax

Like the ConfigParser format, this format supports key-value pairs arranged in sections. Unlike the
ConfigParser format, sections are typed and can be organized hierarchically. Additional files may be included
if needed. Schema components not specified in the application schema can be imported from the configuration file.
Though both formats are substantially line-oriented, this format is more flexible.

The intent of supporting nested section is to allow setting up the configurations for loosely-associated components in
a container. For example, each process running on a host might get its configuration section from that host’s section
of a shared configuration file.

The top level of a configuration file consists of a series of inclusions, key-value pairs, and sections.

Comments can be added on lines by themselves. A comment has a ‘#’ as the first non-space character and extends to
the end of the line:

This is a comment

An inclusion is expressed like this:

%include defaults.conf

The resource to be included can be specified by a relative or absolute URL, resolved relative to the URL of the resource
the %include directive is located in.

A key-value pair is expressed like this:

2 2 Configuration Syntax

http://docs.python.org/lib/module-ConfigParser.html

key value

The key may include any non-white characters except for parentheses. The value contains all the characters between
the key and the end of the line, with surrounding whitespace removed.

Since comments must be on lines by themselves, the ‘#’ character can be part of a value:

key value # still part of the value

Sections may be either empty or non-empty. An empty section may be used to provide an alias for another section.

A non-empty section starts with a header, contains configuration data on subsequent lines, and ends with a terminator.

The header for a non-empty section has this form (square brackets denote optional parts):

<section-type [name] >

section-type and name all have the same syntactic constraints as key names.

The terminator looks like this:

</section-type>

The configuration data in a non-empty section consists of a sequence of one or more key-value pairs and sections. For
example:

<my-section>
key-1 value-1
key-2 value-2

<another-section>
key-3 value-3

</another-section>
</my-section>

(The indentation is used here for clarity, but is not required for syntactic correctness.)

The header for empty sections is similar to that of non-empty sections, but there is no terminator:

<section-type [name] />

2.1 Extending the Configuration Schema

As we’ll see in section 3, “Writing Configuration Schema,” what can be written in a configuration is controlled by
schemas which can be built from components. These components can also be used to extend the set of implementations
of objects the application can handle. What this means when writing a configuration is that third-party implementations
of application object types can be used wherever those application types are used in the configuration, if there’s a
ZConfig component available for that implementation.

The configuration file can use an %import directive to load a named component:

2.1 Extending the Configuration Schema 3

%import Products.Ape

The text to the right of the %import keyword must be the name of a Python package; the ZConfig component
provided by that package will be loaded and incorporated into the schema being used to load the configuration file.
After the import, section types defined in the component may be used in the configuration.

More detail is needed for this to really make sense.

A schema may define section types which are abstract; these cannot be used directly in a configuration, but multiple
concrete section types can be defined which implement the abstract types. Wherever the application allows an abstract
type to be used, any concrete type which implements that abstract type can be used in an actual configuration.

The %import directive allows loading schema components which provide alternate concrete section types which
implement the abstract types defined by the application. This allows third-party implementations of abstract types to
be used in place of or in addition to implementations provided with the application.

Consider an example application application which supports logging in the same way Zope 2 does. There are some
parameters which configure the general behavior of the logging mechanism, and an arbitrary number of log handlers
may be specified to control how the log messages are handled. Several log handlers are provided by the application.
Here is an example logging configuration:

<eventlog>
level verbose

<logfile>
path /var/log/myapp/events.log

</logfile>
</eventlog>

A third-party component may provide a log handler to send high-priority alerts the system administrator’s text pager
or SMS-capable phone. All that’s needed is to install the implementation so it can be imported by Python, and modify
the configuration:

%import my.pager.loghandler

<eventlog>
level verbose

<logfile>
path /var/log/myapp/events.log

</logfile>

<pager>
number 1-800-555-1234
message Something broke!

</pager>
</eventlog>

2.2 Textual Substitution in Values

ZConfig provides a limited way to re-use portions of a value using simple string substitution. To use this facility,
define named bits of replacement text using the %define directive, and reference these texts from values.

4 2 Configuration Syntax

The syntax for %define is:

%define name [value]

The value of name must be a sequence of letters, digits, and underscores, and may not start with a digit; the namespace
for these names is separate from the other namespaces used with ZConfig, and is case-insensitive. If value is omitted,
it will be the empty string. If given, there must be whitespace between name and value; value will not include any
whitespace on either side, just like values from key-value pairs.

Names must be defined before they are used, and may not be re-defined. All resources being parsed as part of a
configuration share a single namespace for defined names. This means that resources which may be included more
than once should not define any names.

References to defined names from configuration values use the syntax described for the ZConfig.substitution
module. Configuration values which include a ‘$’ as part of the actual value will need to use $$ to get a single ‘$’ in
the result.

The values of defined names are processed in the same way as configuration values, and may contain references to
named definitions.

For example, the value for key will evaluate to value:

%define name value
key $name

3 Writing Configuration Schema

ZConfig schema are written as XML documents.

Data types are searched in a special namespace defined by the data type registry. The default registry has slightly
magical semantics: If the value can be matched to a standard data type when interpreted as a basic-key, the standard
data type will be used. If that fails, the value must be a dotted-name containing at least one dot, and a conversion
function will be sought using the search() method of the data type registry used to load the schema.

3.1 Schema Elements

For each element, the content model is shown, followed by a description of how the element is used, and then a list of
the available attributes. For each attribute, the type of the value is given as either the name of a ZConfig datatype or
an XML attribute value type. Familiarity with XML’s Document Type Definition language is helpful.

The following elements are used to describe a schema:

<schema>
description?, metadefault?, example?, import*, (sectiontype |
abstracttype)*, (section | key | multisection | multikey)*

</schema>
Document element for a ZConfig schema.

extends (space-separated-url-references)
A list of URLs of base schemas from which this section type will inherit key, section, and section type
declarations. If omitted, this schema is defined using only the keys, sections, and section types contained
within the schema element.

datatype (basic-key or dotted-name)
The data type converter which will be applied to the value of this section. If the value is a dotted-name that

5

begins with a period, the value of prefix will be pre-pended, if set. If any base schemas are listed in the
extends attribute, the default value for this attribute comes from the base schemas. If the base schemas
all use the same datatype, then that data type will be the default value for the extending schema. If
there are no base schemas, the default value is null, which means that the ZConfig section object will be
used unconverted. If the base schemas have different datatype definitions, you must explicitly define
the datatype in the extending schema.

handler (basic-key)

keytype (basic-key or dotted-name)
The data type converter which will be applied to keys found in this section. This can be used to constrain
key values in different ways; two data types which may be especially useful are the identifier and ipaddr-
or-hostname types. If the value is a dotted-name that begins with a period, the value of prefix will
be pre-pended, if set. If any base schemas are listed in the extends attribute, the default value for this
attribute comes from the base schemas. If the base schemas all use the same keytype, then that key type
will be the default value for the extending schema. If there are no base schemas, the default value is basic-
key. If the base schemas have different keytype definitions, you must explicitly define the keytype in
the extending schema.

prefix (dotted-name)
Prefix to be pre-pended in front of partial dotted-names that start with a period. The value of this attribute
is used in all contexts with the schema element if it hasn’t been overridden by an inner element with a
prefix attribute.

<description>
PCDATA

</description>
Descriptive text explaining the purpose the container of the description element. Most other elements can
contain a description element as their first child. At most one description element may appear in a
given context.

format (NMTOKEN)
Optional attribute that can be added to indicate what conventions are used to mark up the contained text.
This is intended to serve as a hint for documentation extraction tools. Suggested values are:

Value Content Format
plain text/plain; blank lines separate paragraphs
rest reStructuredText
stx Classic Structured Text

<example>
PCDATA

</example>
An example value. This serves only as documentation.

<metadefault>
PCDATA

</metadefault>
A description of the default value, for human readers. This may include information about how a computed
value is determined when the schema does not specify a default value.

<abstracttype>
description?

</abstracttype>
Define an abstract section type.

name (basic-key)
The name of the abstract section type; required.

<sectiontype>
description?, (section | key | multisection | multikey)*

6 3 Writing Configuration Schema

</sectiontype>
Define a concrete section type.

datatype (basic-key or dotted-name)
The data type converter which will be applied to the value of this section. If the value is a dotted-name
that begins with a period, the value of prefix will be pre-pended, if set. If datatype is omitted and
extends is used, the datatype from the section type identified by the extends attribute is used.

extends (basic-key)
The name of a concrete section type from which this section type acquires all key and section declara-
tions. This type does not automatically implement any abstract section type implemented by the named
section type. If omitted, this section is defined with only the keys and sections contained within the
sectiontype element. The new section type is called a derived section type, and the type named by
this attribute is called the base type. Values for the datatype and keytype attributes are acquired from
the base type if not specified.

implements (basic-key)
The name of an abstract section type which this concrete section type implements. If omitted, this section
type does not implement any abstract type, and can only be used if it is specified directly in a schema or
other section type.

keytype (basic-key)
The data type converter which will be applied to keys found in this section. This can be used to constrain
key values in different ways; two data types which may be especially useful are the identifier and ipaddr-
or-hostname types. If the value is a dotted-name that begins with a period, the value of prefix will
be pre-pended, if set. The default value is basic-key. If keytype is omitted and extends is used, the
keytype from the section type identified by the extends attribute is used.

name (basic-key)
The name of the section type; required.

prefix (dotted-name)
Prefix to be pre-pended in front of partial dotted-names that start with a period. The value of this attribute
is used in all contexts in the sectiontype element. If omitted, the prefix specified by a containing
context is used if specified.

<import>
EMPTY

</import>
Import a schema component. Exactly one of the attributes package and src must be specified.

file (file name without directory information)
Name of the component file within a package; if not specified, ‘component.xml’ is used. This may only be
given when package is used. (The ‘component.xml’ file is always used when importing via %import
from a configuration file.)

package (dotted-suffix)
Name of a Python package that contains the schema component being imported. The component will be
loaded from the file identified by the file attribute, or ‘component.xml’ if file is not specified. If the
package name given starts with a dot (‘.’), the name used will be the current prefix and the value of this
attribute concatenated.

src (url-reference)
URL to a separate schema which can provide useful types. The referenced resource must contain a schema,
not a schema component. Section types defined or imported by the referenced schema are added to the
schema containing the import; top-level keys and sections are ignored.

<key>
description?, example?, metadefault?, default*

</key>
A key element is used to describe a key-value pair which may occur at most once in the section type or top-level
schema in which it is listed.

3.1 Schema Elements 7

attribute (identifier)
The name of the Python attribute which this key should be the value of on a SectionValue instance.
This must be unique within the immediate contents of a section type or schema. If this attribute is not
specified, an attribute name will be computed by converting hyphens in the key name to underscores.

datatype (basic-key or dotted-name)
The data type converter which will be applied to the value of this key. If the value is a dotted-name that
begins with a period, the value of prefix will be pre-pended, if set.

default (string)
If the key-value pair is optional and this attribute is specified, the value of this attribute will be converted
using the appropriate data type converter and returned to the application as the configured value. This
attribute may not be specified if the required attribute is yes.

handler (basic-key)

name (basic-key)
The name of the key, as it must be given in a configuration instance, or ‘*’. If the value is ‘*’, any name
not already specified as a key may be used, and the configuration value for the key will be a dictionary
mapping from the key name to the value. In this case, the attribute attribute must be specified, and
the data type for the key will be applied to each key which is found.

required (yes|no)
Specifies whether the configuration instance is required to provide the key. If the value is yes, the
default attribute may not be specified and an error will be reported if the configuration instance does
not specify a value for the key. If the value is no (the default) and the configuration instance does not
specify a value, the value reported to the application will be that specified by the default attribute, if
given, or None.

<multikey>
description?, example?, metadefault?, default*

</multikey>
A multikey element is used to describe a key-value pair which may occur any number of times in the section
type or top-level schema in which it is listed.

attribute (identifier)
The name of the Python attribute which this key should be the value of on a SectionValue instance.
This must be unique within the immediate contents of a section type or schema. If this attribute is not
specified, an attribute name will be computed by converting hyphens in the key name to underscores.

datatype (basic-key or dotted-name)
The data type converter which will be applied to the value of this key. If the value is a dotted-name that
begins with a period, the value of prefix will be pre-pended, if set.

handler (basic-key)

name (basic-key)
The name of the key, as it must be given in a configuration instance, or ‘+’. If the value is ‘+’, any name
not already specified as a key may be used, and the configuration value for the key will be a dictionary
mapping from the key name to the value. In this case, the attribute attribute must be specified, and
the data type for the key will be applied to each key which is found.

required (yes|no)
Specifies whether the configuration instance is required to provide the key. If the value is yes, no
default elements may be specified and an error will be reported if the configuration instance does
not specify at least one value for the key. If the value is no (the default) and the configuration instance
does not specify a value, the value reported to the application will be a list containing one element for
each default element specified as a child of the multikey. Each value will be individually converted
according to the datatype attribute.

<default>
PCDATA

8 3 Writing Configuration Schema

</default>
Each default element specifies a single default value for a multikey. This element can be repeated to
produce a list of individual default values. The text contained in the element will be passed to the datatype
conversion for the multikey.

key (key type of the containing sectiontype)
Key to associate with the default value. This is only used for defaults of a key or multikey with a name
of +; in that case this attribute is required. It is an error to use the key attribute with a default element
for a multikey with a name other than +.

Warning: The datatype of this attribute is that of the section type containing the actual keys, not
necessarily that of the section type which defines the key. If a derived section overrides the key type
of the base section type, the actual key type used is that of the derived section.
This can lead to confusing errors in schemas, though the ZConfig package checks for this when the
schema is loaded. This situation is particularly likely when a derived section type uses a key type
which collapses multiple default keys which were not collapsed by the base section type.
Consider this example schema:

<schema>
<sectiontype name="base" keytype="identifier">
<key name="+" attribute="mapping">
<default key="foo">some value</default>
<default key="FOO">some value</default>

</key>
</sectiontype>

<sectiontype name="derived" keytype="basic-key"
extends="base"/>

<section type="derived" name="*" attribute="section"/>
</schema>

When this schema is loaded, a set of defaults for the derived section type is computed. Since basic-
key is case-insensitive (everything is converted to lower case), ‘foo’ and ‘Foo’ are both converted to
‘foo’, which clashes since key only allows one value for each key.

<section>
description?

</section>
A section element is used to describe a section which may occur at most once in the section type or top-level
schema in which it is listed.

attribute (identifier)
The name of the Python attribute which this section should be the value of on a SectionValue instance.
This must be unique within the immediate contents of a section type or schema. If this attribute is not
specified, an attribute name will be computed by converting hyphens in the section name to underscores,
in which case the name attribute may not be * or +.

handler (basic-key)

name (basic-key)
The name of the section, as it must be given in a configuration instance, *, or +. If the value is * or
this attribute is omitted, any name not already specified as a key may be used. If the value is * or +,
the attribute attribute must be specified. If the value is *, any name is allowed, or the name may be
omitted. If the value is +, any name is allowed, but some name must be provided.

required (yes|no)
Specifies whether the configuration instance is required to provide the section. If the value is yes, an error
will be reported if the configuration instance does not include the section. If the value is no (the default)

3.1 Schema Elements 9

and the configuration instance does not include the section, the value reported to the application will be
None.

type (basic-key)
The section type which matching sections must implement. If the value names an abstract section type,
matching sections in the configuration file must be of a type which specifies that it implements the named
abstract type. If the name identifies a concrete type, the section type must match exactly.

<multisection>
description?

</multisection>
A multisection element is used to describe a section which may occur any number of times in the section
type or top-level schema in which it is listed.

attribute (identifier)
The name of the Python attribute which matching sections should be the value of on a SectionValue
instance. This is required and must be unique within the immediate contents of a section type or schema.
The SectionValue instance will contain a list of matching sections.

handler (basic-key)

name (basic-key)
For a multisection, any name not already specified as a key may be used. If the value is * or +, the
attribute attribute must be specified. If the value is * or this attribute is omitted, any name is allowed,
or the name may be omitted. If the value is +, any name is allowed, but some name must be provided. No
other value for the name attribute is allowed for a multisection.

required (yes|no)
Specifies whether the configuration instance is required to provide at least one matching section. If the
value is yes, an error will be reported if the configuration instance does not include the section. If the
value is no (the default) and the configuration instance does not include the section, the value reported to
the application will be None.

type (basic-key)
The section type which matching sections must implement. If the value names an abstract section type,
matching sections in the configuration file must be of types which specify that they implement the named
abstract type. If the name identifies a concrete type, the section type must match exactly.

3.2 Schema Components

XXX need more explanation

ZConfig supports schema components that can be provided by disparate components, and allows them to be knit
together into concrete schema for applications. Components cannot add additional keys or sections in the application
schema.

A schema component is allowed to define new abstract and section types. Components are identified using a dotted-
name, similar to a Python module name. For example, one component may be zodb.storage.

Schema components are stored alongside application code since they directly reference datatype code. Schema com-
ponents are provided by Python packages. The component definition is normally stored in the file ‘component.xml’;
an alternate filename may be specified using the file attribute of the import element. Components imported using
the %import keyword from a configuration file must be named ‘component.xml’. The component defines the types
provided by that component; it must have a component element as the document element.

The following element is used as the document element for schema components. Note that schema components do not
allow keys and sections to be added to the top-level of a schema; they serve only to provide type definitions.

<component>
description?, (abstracttype | sectiontype)*

10 3 Writing Configuration Schema

</component>
The top-level element for schema components.

prefix (dotted-name)
Prefix to be pre-pended in front of partial dotted-names that start with a period. The value of this attribute
is used in all contexts within the component element if it hasn’t been overridden by an inner element
with a prefix attribute.

3.3 Referring to Files in Packages

The extends attribute of the schema element is used to refer to files containing base schema; sometimes it makes
sense to refer to a base schema relative to the Python package that provides it. For this purpose, ZConfig supports the
special package: URL scheme.

The package: URL scheme is straightforward, and contains three parts: the scheme name, the package name, and a
relative path. The relative path is searched for using the named package’s __path__ if it’s a conventional filesystem
package, or using the package’s loader if that supports resource access (such as the loader for eggs and other ZIP-file
based packages).

The basic form of the package: URL is

package:package.name:relative-path

The package name must be fully specified; the current prefix, if any, is not used. If the named package is contained in
an egg or ZIP file, the resource identified by the relative path must reside in the same egg or ZIP file.

The package: URL scheme is generally available everywhere ZConfig supports loading text from URLs directly,
but applications using ZConfig do not automatically acquire general support for this.

4 Standard ZConfig Datatypes

There are a number of data types which can be identified using the datatype attribute on key, sectiontype,
and schema elements. Applications may extend the set of datatypes by calling the register() method of the data
type registry being used or by using Python dotted-names to refer to conversion routines defined in code.

The following data types are provided by the default type registry.

basic-key
The default data type for a key in a ZConfig configuration file. The result of conversion is always lower-case,
and matches the regular expression d[a-z][-._a-z0-9]*c.

boolean
Convert a human-friendly string to a boolean value. The names yes, on, and true convert to True, while no,
off, and false convert to False. Comparisons are case-insensitive. All other input strings are disallowed.

byte-size
A specification of a size, with byte multiplier suffixes (for example, ‘128MB’). Suffixes are case insensitive and
may be ‘KB’, ‘MB’, or ‘GB’

dotted-name
A string consisting of one or more identifier values separated by periods (‘.’).

dotted-suffix
A string consisting of one or more identifier values separated by periods (‘.’), possibly prefixed by a period.
This can be used to indicate a dotted name that may be specified relative to some base dotted name.

3.3 Referring to Files in Packages 11

existing-dirpath
Validates that the directory portion of a pathname exists. For example, if the value provided is ‘/foo/bar’, ‘/foo’
must be an existing directory. No conversion is performed.

existing-directory
Validates that a directory by the given name exists on the local filesystem. No conversion is performed.

existing-file
Validates that a file by the given name exists. No conversion is performed.

existing-path
Validates that a path (file, directory, or symlink) by the given name exists on the local filesystem. No conversion
is performed.

float
A Python float. Inf, -Inf, and NaN are not allowed.

identifier
Any valid Python identifier.

inet-address
An Internet address expressed as a (hostname, port) pair. If only the port is specified, the default host will
be returned for hostname. The default host is localhost on Windows and the empty string on all other
platforms. If the port is omitted, None will be returned for port.

inet-binding-address
An Internet address expressed as a (hostname, port) pair. The address is suitable for binding a socket. If only
the port is specified, the default host will be returned for hostname. The default host is the empty string on all
platforms. If the port is omitted, None will be returned for port.

inet-connection-address
An Internet address expressed as a (hostname, port) pair. The address is suitable for connecting a socket to a
server. If only the port is specified, ’127.0.0.1’ will be returned for hostname. If the port is omitted, None
will be returned for port.

integer
Convert a value to an integer. This will be a Python int if the value is in the range allowed by int, otherwise
a Python long is returned.

ipaddr-or-hostname
Validates a valid IP address or hostname. If the first character is a digit, the value is assumed to be an IP address.
If the first character is not a digit, the value is assumed to be a hostname. Hostnames are converted to lower
case.

locale
Any valid locale specifier accepted by the available locale.setlocale() function. Be aware that only the
’C’ locale is supported on some platforms.

null
No conversion is performed; the value passed in is the value returned. This is the default data type for section
values.

port-number
Returns a valid port number as an integer. Validity does not imply that any particular use may be made of the
port, however. For example, port number lower than 1024 generally cannot be bound by non-root users.

socket-address
An address for a socket. The converted value is an object providing two attributes. family specifies the
address family (AF_INET or AF_UNIX), with None instead of AF_UNIX on platforms that don’t support it.

12 4 Standard ZConfig Datatypes

The address attribute will be the address that should be passed to the socket’s bind() method. If the family
is AF_UNIX, the specific address will be a pathname; if the family is AF_INET, the second part will be the
result of the inet-address conversion.

string
Returns the input value as a string. If the source is a Unicode string, this implies that it will be checked to be
simple 7-bit ASCII. This is the default data type for values in configuration files.

time-interval
A specification of a time interval in seconds, with multiplier suffixes (for example, 12h). Suffixes are case
insensitive and may be ‘s’ (seconds), ‘m’ (minutes), ‘h’ (hours), or ‘d’ (days).

timedelta
Similar to the time-interval, this data type returns a Python datetime.timedelta object instead of a float. The
set of suffixes recognized by timedelta are: ‘w’ (weeks), ‘d’ (days), ‘h’ (hours), ‘m’ (minutes), ‘s’ (seconds).
Values may be floats, for example: 4w 2.5d 7h 12m 0.001s.

5 Standard ZConfig Schema Components

ZConfig provides a few convenient schema components as part of the package. These may be used directly or can
server as examples for creating new components.

5.1 ZConfig.components.basic

The ZConfig.components.basic package provides small components that can be helpful in composing
application-specific components and schema. There is no large functionality represented by this package. The de-
fault component provided by this package simply imports all of the smaller components. This can be imported using

<import package="ZConfig.components.basic"/>

Each of the smaller components is documented directly; importing these selectively can reduce the time it takes to
load a schema slightly, and allows replacing the other basic components with alternate components (by using different
imports that define the same type names) if desired.

The Mapping Section Type

There is a basic section type that behaves like a simple Python mapping; this can be imported directly using

<import package="ZConfig.components.basic" file="mapping.xml"/>

This defines a single section type, ZConfig.basic.mapping. When this is used, the section value is a Python dictionary
mapping keys to string values.

This type is intended to be used by extending it in simple ways. The simplest is to create a new section type name that
makes more sense for the application:

13

<import package="ZConfig.components.basic" file="mapping.xml"/>

<sectiontype name="my-mapping"
extends="ZConfig.basic.mapping"
/>

<section name="*"
type="my-mapping"
attribute="map"
/>

This allows a configuration to contain a mapping from basic-key names to string values like this:

<my-mapping>
This that
and the other

</my-mapping>

The value of the configuration object’s map attribute would then be the dictionary

{’this’: ’that’,
’and’: ’the other’,
}

(Recall that the basic-key data type converts everything to lower case.)

Perhaps a more interesting application of ZConfig.basic.mapping is using the derived type to override the keytype.
If we have the conversion function:

def email_address(value):
userid, hostname = value.split("@", 1)
hostname = hostname.lower() # normalize what we know we can
return "%s@%s" % (userid, hostname)

then we can use this as the key type for a derived mapping type:

<import package="ZConfig.components.basic" file="mapping.xml"/>

<sectiontype name="email-users"
extends="ZConfig.basic.mapping"
keytype="mypkg.datatypes.email_address"
/>

<section name="*"
type="email-users"
attribute="email_users"
/>

14 5 Standard ZConfig Schema Components

5.2 ZConfig.components.logger

The ZConfig.components.logger package provides configuration support for the logging package in
Python’s standard library. This component can be imported using

<import package="ZConfig.components.logger"/>

This component defines two abstract types and several concrete section types. These can be imported as a unit, as
above, or as four smaller components usable in creating alternate logging packages.

The first of the four smaller components contains the abstract types, and can be imported using

<import package="ZConfig.components.logger" file="abstract.xml"/>

The two abstract types imported by this are:

ZConfig.logger.log
Logger objects are represented by this abstract type.

ZConfig.logger.handler
Each logger object can have one or more “handlers” associated with them. These handlers are responsible for
writing logging events to some form of output stream using appropriate formatting. The output stream may be
a file on a disk, a socket communicating with a server on another system, or a series of syslog messages.
Section types which implement this type represent these handlers.

The second and third of the smaller components provides section types that act as factories for logging.Logger
objects. These can be imported using

<import package="ZConfig.components.logger" file="eventlog.xml"/>
<import package="ZConfig.components.logger" file="logger.xml"/>

The types defined in these components implement the ZConfig.logger.log abstract type. The ‘eventlog.xml’ com-
ponent defines an eventlog type which represents the root logger from the the logging package (the return value
of logging.getLogger()), while the ‘logger.xml’ component defines a logger section type which represents a
named logger (as returned by logging.getLogger(name)).

The third of the smaller components provides section types that are factories for logging.Handler objects. This
can be imported using

<import package="ZConfig.components.logger" file="handlers.xml"/>

The types defined in this component implement the ZConfig.logger.handler abstract type.

The configuration objects provided by both the logger and handler types are factories for the finished loggers and
handlers. These factories should be called with no arguments to retrieve the logger or log handler objects. Calling the
factories repeatedly will cause the same objects to be returned each time, so it’s safe to simply call them to retrieve the
objects.

The factories for the logger objects, whether the eventlog or logger section type is used, provide a reopen() method
which may be called to close any log files and re-open them. This is useful when using a UNIX signal to effect log file
rotation: the signal handler can call this method, and not have to worry about what handlers have been registered for

5.2 ZConfig.components.logger 15

http://docs.python.org/lib/module-logging.html

the logger. There is also a function in the ZConfig.components.logger.loghandler module that re-opens
all open log files created using ZConfig configuraiton:

reopenFiles()
Closes and re-opens all the log files held open by handlers created by the factories for logfile sections. This
is intended to help support log rotation for applications.

Building an application that uses the logging components is fairly straightforward. The schema needs to import the
relevant components and declare their use:

<schema>
<import package="ZConfig.components.logger" file="eventlog.xml"/>
<import package="ZConfig.components.logger" file="handlers.xml"/>

<section type="eventlog" name="*" attribute="eventlog"
required="yes"/>

</schema>

In the application, the schema and configuration file should be loaded normally. Once the configuration object is
available, the logger factory should be called to configure Python’s logging package:

import os
import ZConfig

def run(configfile):
schemafile = os.path.join(os.path.dirname(__file__), "schema.xml")
schema = ZConfig.loadSchema(schemafile)
config, handlers = ZConfig.loadConfig(schema, configfile)

configure the logging package:
config.eventlog()

now do interesting things

An example configuration file for this application may look like this:

<eventlog>
level info

<logfile>
path /var/log/myapp
format %(asctime)s %(levelname)s %(name)s %(message)s
locale-specific date/time representation
dateformat %c

</logfile>

<syslog>
level error
address syslog.example.net:514
format %(levelname)s %(name)s %(message)s

</syslog>
</eventlog>

Refer to the logging package documentation for the names available in the message format strings (the format

16 5 Standard ZConfig Schema Components

key in the log handlers). The date format strings (the dateformat key in the log handlers) are the same as those
accepted by the time.strftime() function.

See Also:

PEP 282, “A Logging System”
The proposal which described the logging feature for inclusion in the Python standard library.

logging — Logging facility for Python
Python’s logging package documentation, from the Python Library Reference.

Original Python logging package
This is the original source for the logging package. This is mostly of historical interest.

6 Using Components to Extend Schema

It is possible to use schema components and the %import construct to extend the set of section types available for a
specific configuration file, and allow the new components to be used in place of standard components.

The key to making this work is the use of abstract section types. Wherever the original schema accepts an abstract
type, it is possible to load new implementations of the abstract type and use those instead of, or in addition to, the
implementations loaded by the original schema.

Abstract types are generally used to represent interfaces. Sometimes these are interfaces for factory objects, and
sometimes not, but there’s an interface that the new component needs to implement. What interface is required should
be documented in the description element in the abstracttype element; this may be by reference to an
interface specified in a Python module or described in some other bit of documentation.

The following things need to be created to make the new component usable from the configuration file:

1. An implementation of the required interface.

2. A schema component that defines a section type that contains the information needed to construct the compo-
nent.

3. A “datatype” function that converts configuration data to an instance of the component.

For simplicity, let’s assume that the implementation is defined by a Python class.

The example component we build here will be in the noise package, but any package will do. Components load-
able using %import must be contained in the ‘component.xml’ file; alternate filenames may not be selected by the
%import construct.

Create a ZConfig component that provides a section type to support your component. The new section type must
declare that it implements the appropriate abstract type; it should probably look something like this:

17

http://docs.python.org/lib/module-logging.html
http://docs.python.org/lib/lib.html
http://www.red-dove.com/pythonunhbox voidb@x penalty @M hskip z@skip global let OT1	extunderscore unhbox voidb@x kern .06emvbox {hrule width.3em}OT1	extunderscore discretionary {-}{}{}penalty @M hskip z@skip logging.html

<component prefix="noise.server">
<import package="ZServer"/>

<sectiontype name="noise-generator"
implements="ZServer.server"
datatype=".NoiseServerFactory">

<!-- specific configuration data should be described here -->

<key name="port"
datatype="port-number"
required="yes">

<description>
Port number to listen on.

</description>
</key>

<key name="color"
datatype=".noise_color"
default="white">

<description>
Silly way to specify a noise generation algorithm.

</description>
</key>

</sectiontype>
</component>

This example uses one of the standard ZConfig datatypes, port-number, and requires two additional types to be
provided by the noise.server module: NoiseServerFactory and noise_color().

The noise_color() function is a datatype conversion for a key, so it accepts a string and returns the value that
should be used:

_noise_colors = {
color -> r,g,b
’white’: (255, 255, 255),
’pink’: (255, 182, 193),
}

def noise_color(string):
if string in _noise_colors:

return _noise_colors[string]
else:

raise ValueError(’unknown noise color: %r’ % string)

NoiseServerFactory is a little different, as it’s the datatype function for a section rather than a key. The param-
eter isn’t a string, but a section value object with two attributes, port and color.

Since the ZServer.server abstract type requires that the component returned is a factory object, the datatype function
can be implemented at the constructor for the class of the factory object. (If the datatype function could select different
implementation classes based on the configuration values, it makes more sense to use a simple function that returns
the appropriate implementation.)

A class that implements this datatype might look like this:

18 6 Using Components to Extend Schema

from ZServer.datatypes import ServerFactory
from noise.generator import WhiteNoiseGenerator, PinkNoiseGenerator

class NoiseServerFactory(ServerFactory):

def __init__(self, section):
host and ip will be initialized by ServerFactory.prepare()
self.host = None
self.ip = None
self.port = section.port
self.color = section.color

def create(self):
if self.color == ’white’:

generator = WhiteNoiseGenerator()
else:

generator = PinkNoiseGenerator()
return NoiseServer(self.ip, self.port, generator)

You’ll need to arrange for the package containing this component to be available on Python’s sys.path before the
configuration file is loaded; this is mostly easily done by manipulating the PYTHONPATH environment variable.

Your configuration file can now include the following to load and use your new component:

%import noise

<noise-generator>
port 1234
color white

</noise-generator>

7 ZConfig — Basic configuration support

The main ZConfig package exports these convenience functions:

loadConfig(schema, url[, overrides])
Load and return a configuration from a URL or pathname given by url. url may be a URL, absolute path-
name, or relative pathname. Fragment identifiers are not supported. schema is a reference to a schema loaded
by loadSchema() or loadSchemaFile(). The return value is a tuple containing the configuration ob-
ject and a composite handler that, when called with a name-to-handler mapping, calls all the handlers for the
configuration.

The optional overrides argument represents information derived from command-line arguments. If given, it must
be either a sequence of value specifiers, or None. A value specifier is a string of the form optionpath=value. The
optionpath specifies the “full path” to the configuration setting: it can contain a sequence of names, separated
by ‘/’ characters. Each name before the last names a section from the configuration file, and the last name
corresponds to a key within the section identified by the leading section names. If optionpath contains only one
name, it identifies a key in the top-level schema. value is a string that will be treated just like a value in the
configuration file.

loadConfigFile(schema, file[, url[, overrides]])
Load and return a configuration from an opened file object. If url is omitted, one will be computed based
on the name attribute of file, if it exists. If no URL can be determined, all %include statements in the
configuration must use absolute URLs. schema is a reference to a schema loaded by loadSchema() or

19

loadSchemaFile(). The return value is a tuple containing the configuration object and a composite handler
that, when called with a name-to-handler mapping, calls all the handlers for the configuration. The overrides
argument is the same as for the loadConfig() function.

loadSchema(url)
Load a schema definition from the URL url. url may be a URL, absolute pathname, or relative pathname.
Fragment identifiers are not supported. The resulting schema object can be passed to loadConfig() or
loadConfigFile(). The schema object may be used as many times as needed.

loadSchemaFile(file[, url])
Load a schema definition from the open file object file. If url is given and not None, it should be the URL of
resource represented by file. If url is omitted or None, a URL may be computed from the name attribute of
file, if present. The resulting schema object can be passed to loadConfig() or loadConfigFile(). The
schema object may be used as many times as needed.

The following exceptions are defined by this package:

exception ConfigurationError
Base class for exceptions specific to the ZConfig package. All instances provide a message attribute that
describes the specific error, and a url attribute that gives the URL of the resource the error was located in, or
None.

exception ConfigurationSyntaxError
Exception raised when a configuration source does not conform to the allowed syntax. In addition to the
message and url attributes, exceptions of this type offer the lineno attribute, which provides the line
number at which the error was detected.

exception DataConversionError
Raised when a data type conversion fails with ValueError. This exception is a subclass of both
ConfigurationError and ValueError. The str() of the exception provides the explanation from
the original ValueError, and the line number and URL of the value which provoked the error. The following
additional attributes are provided:

Attribute Value
colno column number at which the value starts, or None
exception the original ValueError instance
lineno line number on which the value starts
message str() returned by the original ValueError
value original value passed to the conversion function
url URL of the resource providing the value text

exception SchemaError
Raised when a schema contains an error. This exception type provides the attributes url, lineno, and colno,
which provide the source URL, the line number, and the column number at which the error was detected. These
attributes may be None in some cases.

exception SchemaResourceError
Raised when there’s an error locating a resource required by the schema. This is derived from SchemaError.
Instances of this exception class add the attributes filename, package, and path, which hold the filename
searched for within the package being loaded, the name of the package, and the __path__ attribute of the
package itself (or None if it isn’t a package or could not be imported).

exception SubstitutionReplacementError
Raised when the source text contains references to names which are not defined in mapping. The attributes
source and name provide the complete source text and the name (converted to lower case) for which no
replacement is defined.

exception SubstitutionSyntaxError
Raised when the source text contains syntactical errors.

20 7 ZConfig — Basic configuration support

7.1 Basic Usage

The simplest use of ZConfig is to load a configuration based on a schema stored in a file. This example loads a
configuration file specified on the command line using a schema in the same directory as the script:

import os
import sys
import ZConfig

try:
myfile = __file__

except NameError:
myfile = os.path.realpath(sys.argv[0])

mydir = os.path.dirname(myfile)

schema = ZConfig.loadSchema(os.path.join(mydir, ’schema.xml’))
conf, handler = ZConfig.loadConfig(schema, sys.argv[1])

If the schema file contained this schema:

<schema>
<key name=’server’ required=’yes’/>
<key name=’attempts’ datatype=’integer’ default=’5’/>

</schema>

and the file specified on the command line contained this text:

sample configuration

server www.example.com

then the configuration object conf loaded above would have two attributes:

Attribute Value
server ’www.example.com’
attempts 5

8 ZConfig.datatypes — Default data type registry

The ZConfig.datatypesmodule provides the implementation of the default data type registry and all the standard
data types supported by ZConfig. A number of convenience classes are also provided to assist in the creation of
additional data types.

A datatype registry is an object that provides conversion functions for data types. The interface for a registry is fairly
simple.

A conversion function is any callable object that accepts a single argument and returns a suitable value, or raises an
exception if the input value is not acceptable. ValueError is the preferred exception for disallowed inputs, but any
other exception will be properly propagated.

7.1 Basic Usage 21

class Registry([stock])
Implementation of a simple type registry. If given, stock should be a mapping which defines the “built-in”
data types for the registry; if omitted or None, the standard set of data types is used (see section 4, “Standard
ZConfig Datatypes”).

Registry objects have the following methods:

get(name)
Return the type conversion routine for name. If the conversion function cannot be found, an (unspecified)
exception is raised. If the name is not provided in the stock set of data types by this registry and has not
otherwise been registered, this method uses the search() method to load the conversion function. This is the
only method the rest of ZConfig requires.

register(name, conversion)
Register the data type name name to use the conversion function conversion. If name is already registered or
provided as a stock data type, ValueError is raised (this includes the case when name was found using the
search() method).

search(name)
This is a helper method for the default implementation of the get() method. If name is a Python dotted-name,
this method loads the value for the name by dynamically importing the containing module and extracting the
value of the name. The name must refer to a usable conversion function.

The following classes are provided to define conversion functions:

class MemoizedConversion(conversion)
Simple memoization for potentially expensive conversions. This conversion helper caches each successful con-
version for re-use at a later time; failed conversions are not cached in any way, since it is difficult to raise a
meaningful exception providing information about the specific failure.

class RangeCheckedConversion(conversion[, min[, max]])
Helper that performs range checks on the result of another conversion. Values passed to instances of this con-
version are converted using conversion and then range checked. min and max, if given and not None, are the
inclusive endpoints of the allowed range. Values returned by conversion which lay outside the range described
by min and max cause ValueError to be raised.

class RegularExpressionConversion(regex)
Conversion that checks that the input matches the regular expression regex. If it matches, returns the input,
otherwise raises ValueError.

9 ZConfig.loader — Resource loading support

This module provides some helper classes used by the primary APIs exported by the ZConfig package. These classes
may be useful for some applications, especially applications that want to use a non-default data type registry.

class Resource(file, url[, fragment])
Object that allows an open file object and a URL to be bound together to ease handling. Instances have the
attributes file, url, and fragment which store the constructor arguments. These objects also have a
close() method which will call close() on file, then set the file attribute to None and the closed
to True.

class BaseLoader()
Base class for loader objects. This should not be instantiated directly, as the loadResource() method must
be overridden for the instance to be used via the public API.

class ConfigLoader(schema)
Loader for configuration files. Each configuration file must conform to the schema schema. The load*()
methods return a tuple consisting of the configuration object and a composite handler.

22 9 ZConfig.loader — Resource loading support

class SchemaLoader([registry])
Loader that loads schema instances. All schema loaded by a SchemaLoader will use the same
data type registry. If registry is provided and not None, it will be used, otherwise an instance of
ZConfig.datatypes.Registry will be used.

9.1 Loader Objects

Loader objects provide a general public interface, an interface which subclasses must implement, and some utility
methods.

The following methods provide the public interface:

loadURL(url)
Open and load a resource specified by the URL url. This method uses the loadResource() method to
perform the actual load, and returns whatever that method returns.

loadFile(file[, url])
Load from an open file object, file. If given and not None, url should be the URL of the resource represented by
file. If omitted or None, the name attribute of file is used to compute a file: URL, if present. This method
uses the loadResource() method to perform the actual load, and returns whatever that method returns.

The following method must be overridden by subclasses:

loadResource(resource)
Subclasses of BaseLoader must implement this method to actually load the resource and return the appropri-
ate application-level object.

The following methods can be used as utilities:

isPath(s)
Return true if s should be considered a filesystem path rather than a URL.

normalizeURL(url-or-path)
Return a URL for url-or-path. If url-or-path refers to an existing file, the corresponding file: URL is
returned. Otherwise url-or-path is checked for sanity: if it does not have a schema, ValueError is raised, and
if it does have a fragment identifier, ConfigurationError is raised. This uses isPath() to determine
whether url-or-path is a URL of a filesystem path.

openResource(url)
Returns a resource object that represents the URL url. The URL is opened using the urllib2.urlopen()
function, and the returned resource object is created using createResource(). If the URL cannot be
opened, ConfigurationError is raised.

createResource(file, url)
Returns a resource object for an open file and URL, given as file and url, respectively. This may be overridden
by a subclass if an alternate resource implementation is desired.

10 ZConfig.cmdline — Command-line override support

This module exports an extended version of the ConfigLoader class from the ZConfig.loader module. This
provides support for overriding specific settings from the configuration file from the command line, without requiring
the application to provide specific options for everything the configuration file can include.

class ExtendedConfigLoader(schema)
Construct a ConfigLoader subclass that adds support for command-line overrides.

The following additional method is provided, and is the only way to provide position information to associate with
command-line parameters:

9.1 Loader Objects 23

addOption(spec[, pos])
Add a single value to the list of overridden values. The spec argument is a value specified, as described for
the ZConfig.loadConfig() function. A source position for the specifier may be given as pos. If pos is
specified and not None, it must be a sequence of three values. The first is the URL of the source (or some
other identifying string). The second and third are the line number and column of the setting. These position
information is only used to construct a DataConversionError when data conversion fails.

11 ZConfig.substitution — String substitution

This module provides a basic substitution facility similar to that found in the Bourne shell (sh on most UNIX plat-
forms).

The replacements supported by this module include:

Source Replacement Notes
$$ $ (1)
$name The result of looking up name (2)
${name} The result of looking up name

Notes:

(1) This is different from the Bourne shell, which uses \$ to generate a ‘$’ in the result text. This difference avoids
having as many special characters in the syntax.

(2) Any character which immediately follows name may not be a valid character in a name.

In each case, name is a non-empty sequence of alphanumeric and underscore characters not starting with a digit. If
there is not a replacement for name, the exception SubstitutionReplacementError is raised. Note that the
lookup is expected to be case-insensitive; this module will always use a lower-case version of the name to perform the
query.

This module provides these functions:

substitute(s, mapping)
Substitute values from mapping into s. mapping can be a dict or any type that supports the get() method
of the mapping protocol. Replacement values are copied into the result without further interpretation. Raises
SubstitutionSyntaxError if there are malformed constructs in s.

isname(s)
Returns True if s is a valid name for a substitution text, otherwise returns False.

11.1 Examples

>>> from ZConfig.substitution import substitute
>>> d = {’name’: ’value’,
... ’top’: ’$middle’,
... ’middle’ : ’bottom’}
>>>
>>> substitute(’$name’, d)
’value’
>>> substitute(’$top’, d)
’$middle’

24 11 ZConfig.substitution — String substitution

A Schema Document Type Definition

The following is the XML Document Type Definition for ZConfig schema:

<!--

Copyright (c) 2002, 2003 Zope Corporation and Contributors.
All Rights Reserved.

This software is subject to the provisions of the Zope Public License,
Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution.
THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED
WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS
FOR A PARTICULAR PURPOSE.

Please note that not all documents that conform to this DTD are
legal ZConfig schema. The ZConfig reference manual describes many
constraints that are important to understanding ZConfig schema.
-->

<!-- DTD for ZConfig schema documents. -->

<!ELEMENT schema (description?, metadefault?, example?,
import*,
(sectiontype | abstracttype)*,
(section | key | multisection | multikey)*)>

<!ATTLIST schema
extends NMTOKEN #IMPLIED
prefix NMTOKEN #IMPLIED
handler NMTOKEN #IMPLIED
keytype NMTOKEN #IMPLIED
datatype NMTOKEN #IMPLIED>

<!ELEMENT component (description?, (sectiontype | abstracttype)*)>
<!ATTLIST component

prefix NMTOKEN #IMPLIED>

<!ELEMENT import EMPTY>
<!ATTLIST import

file CDATA #IMPLIED
package NMTOKEN #IMPLIED
src CDATA #IMPLIED>

<!ELEMENT description (#PCDATA)*>
<!ATTLIST description

format NMTOKEN #IMPLIED>

<!ELEMENT metadefault (#PCDATA)*>
<!ELEMENT example (#PCDATA)*>

<!ELEMENT sectiontype (description?,
(section | key | multisection | multikey)*)>

<!ATTLIST sectiontype
name NMTOKEN #REQUIRED
prefix NMTOKEN #IMPLIED
keytype NMTOKEN #IMPLIED

25

datatype NMTOKEN #IMPLIED
implements NMTOKEN #IMPLIED
extends NMTOKEN #IMPLIED>

<!ELEMENT abstracttype (description?)>
<!ATTLIST abstracttype

name NMTOKEN #REQUIRED
prefix NMTOKEN #IMPLIED>

<!ELEMENT default (#PCDATA)*>
<!ATTLIST default

key CDATA #IMPLIED>

<!ELEMENT key (description?, metadefault?, example?, default*)>
<!ATTLIST key

name CDATA #REQUIRED
attribute NMTOKEN #IMPLIED
datatype NMTOKEN #IMPLIED
handler NMTOKEN #IMPLIED
required (yes|no) "no"
default CDATA #IMPLIED>

<!ELEMENT multikey (description?, metadefault?, example?, default*)>
<!ATTLIST multikey

name CDATA #REQUIRED
attribute NMTOKEN #IMPLIED
datatype NMTOKEN #IMPLIED
handler NMTOKEN #IMPLIED
required (yes|no) "no">

<!ELEMENT section (description?)>
<!ATTLIST section

name CDATA "*"
attribute NMTOKEN #IMPLIED
type NMTOKEN #REQUIRED
handler NMTOKEN #IMPLIED
required (yes|no) "no">

<!ELEMENT multisection (description?)>
<!ATTLIST multisection

name CDATA "*"
attribute NMTOKEN #IMPLIED
type NMTOKEN #REQUIRED
handler NMTOKEN #IMPLIED
required (yes|no) "no">

26 A Schema Document Type Definition

	1 Introduction
	2 Configuration Syntax
	2.1 Extending the Configuration Schema
	2.2 Textual Substitution in Values

	3 Writing Configuration Schema
	3.1 Schema Elements
	3.2 Schema Components
	3.3 Referring to Files in Packages

	4 Standard ZConfig Datatypes
	5 Standard ZConfig Schema Components
	5.1 ZConfig.components.basic
	The Mapping Section Type

	5.2 ZConfig.components.logger

	6 Using Components to Extend Schema
	7 ZConfig --- Basic configuration support
	7.1 Basic Usage

	8 ZConfig.datatypes --- Default data type registry
	9 ZConfig.loader --- Resource loading support
	9.1 Loader Objects

	10 ZConfig.cmdline --- Command-line override support
	11 ZConfig.substitution --- String substitution
	11.1 Examples

	A Schema Document Type Definition

